Statistical Properties of Inter-Series Mixing in Helium: From Integrability to Chaos
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The photoionization spectrum of helium shows considerable complexity close to the double-
ionization threshold. By analyzing the results from both our recent experiments and ab initio three-
and one-dimensional calculations, we show that the statistical properties of the spacings between
neighboring energy levels clearly display a transition towards quantum chaos.

Since the work of Poincaré, it is known that the general
classical three-body problem has only global constants
of motion, such as energy and angular momentum. It
is thus non-integrable, since there are not enough non-
trivial constants of motion to allow an analytical solu-
tion. This typically implies that the phase space is a mix-
ture of regular and chaotic dynamics. Celestial mechan-
ics abounds with examples, e.g. the prototypical earth-
moon-sun system [1]. The dynamics of three charged
particles is superficially similar since the force law scales
also as 1/r2, but with two possible signs of the coupling
constant. The actual dynamics of the two electrons in
helium — the simplest three-body quantum system — is
largely chaotic, even for the simplified situation with the
nucleus fixed in space. Nonetheless, at low energies the
quantum states of helium occur in seemingly regular pro-
gressions, labeled by sets of approximately good quantum
numbers, and even the doubly excited states have largely
been classified [2]. What are then the manifestations of
the underlying classical chaos in the quantum spectrum
of helium? This is a fundamental question in quantum-
classical correspondence, with regard to the nature of
semi-classical approximations in the presence of chaos,
and in quantum chaos itself. What will be the signatures
of the onset of quantum chaos? One expects that the ap-
proximate quantum numbers, overviewed e.g. in Ref. [2],
will cease to function, as series of states overlap and mix
so strongly that there are essentially no good quantum
numbers left, except for the ordering of states by their
energies. The doubly excited states of helium are reso-
nances, which will overlap and interact strongly when
chaos sets in, giving rise to Ericson fluctuations well-
known in phenomenological nuclear theory [3]. It is the
purpose of this Letter to present new results from exper-
iment and theoretical modeling, which clearly show that
the threshold to this new regime has now been passed
for the first time in a three-body quantum system with
known Hamiltonian.

The 'P° doubly excited states of helium can be de-
scribed in Herrick’s classification scheme by N, K,,, with
N (n) denoting the principal quantum number of the in-

ner (outer) electron, and K the angular-correlation quan-
tum number [4]. For fixed N, the various n, K series con-
verge to the single-ionization threshold Iy = —4/N? (in
Rydberg units). Starting with N=5, the lowest states of
the series lie below Inx_;. As a consequence, they act as
perturbers of the N —1 series, leading to interferences [5],
which can be reproduced by numerically complicated ab
initio calculations [6]. While up to the N=8 threshold,
Ig, the effects of the perturbers are quite simple, from
Iy on, the increasing proliferation of perturbers tends to
complicate the spectra increasingly, and Herrick’s classi-
fication starts to break down, at least for a large fraction
of states [7].

The most intense series in the spectrum are the prin-
cipal series with K = N—2. Since K & —N<cosO>,
where O is the angle from the nucleus to the two elec-
trons, © approaches m for principal series with large N.
Therefore, the experimentally observed series can be re-
lated in the semiclassical limit — based on Gutzwiller’s
trace formula [8] — to periodic orbits of the collinear eZe
configuration, with both electrons on opposite sides of
the nucleus. It is well known that the classical dynam-
ics of the eZe configuration is strongly chaotic in radial,
but stable in angular direction. One can thus expect
a mixing of series with different N but constant N—K,
i.e. constant number of bending quanta with respect to a
collinear eZe configuration [2]. In other words, for highly
excited series, N — K is expected to be approximately a
good quantum number, while states with the same N—-K,
but different (IV,n) strongly interact [6].

There are numerous semiclassical studies of helium
based on Gutzwiller’s trace formula (see e.g. Ref. [2]),
which aim at understanding the structure of quantum dy-
namics in terms of its classical counterpart. The present
work focuses on the random-matrix approach [9], which
deals with universal aspects of quantum chaos, i.e. the
general features present in all chaotic quantum systems.
We compare the present experimental spectra close to
Iy with the results of our calculations and find excellent
agreement. In particular, we show that the statistics of
nearest-neighbor level spacings can be well reproduced



by a simple random-matrix model adapted to intermit-
tency [10], even though N — K is still a good quantum
number. This model mixes regular and chaotic spectra
and corresponds to an interaction between regular Ryd-
berg series and chaotic perturbers. Using a simplified
one-dimensional (1D) model of helium, we reproduce the
transition from the regular to a fully chaotic regime.

The experiments were performed at beamline 9.0.1 of
the Advanced Light Source (ALS) in Berkeley, Califor-
nia, using photons with a spectral resolution of =2 meV
(FWHM) and a setup described in Ref. [11]. The calcula-
tions were performed with the complex-rotation method
on a Cray C98, with details given in Ref. [6].
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FIG. 1. (a): Double-excitation spectrum of He in the re-

gion of the 9,7, principal Rydberg series, with perturbers
10,810 and 10,811 (vertical arrows). The solid line through
the data points represents the best fit. Assignments of the
resonances are made by vertical-bar diagrams on top, includ-
ing resonances of the secondary series 9,5, and 9,3,. (b): Ab
initio calculated spectrum in the same region.

Figure 1(a) shows the spectrum of the !P° double exci-
tations in helium in the energy region just below Iy from
78.1175 to 78.2675 eV, with considerably improved reso-
lution and signal-to-noise ratio as compared to previous
results [12]. In Fig. 1(b), we also show the theoretical
spectrum, convoluted with a Gaussian of 2-meV width.
In the least-squares fit of the measured spectrum, the the-
oretical values for linewidth and Fano g-parameter were
used, but the energy positions and intensities of the lines
were adjusted to allow for possible deviations between ex-
periment and theory, spectral drifts, and non-linearities.
Details of this analysis have been given elsewhere [11].
As a result, the calculated spectrum matches the exper-
imental data very well. We note that some resonances
of the 9,7, principal and the 9,5,, secondary series re-

veal Fano parameters |g| > 1 (up to |g| = 7, with nega-
tive sign, for 9, 714), very different from the values found
for the principal and secondary series below the I5 to Ig
thresholds, with |¢| < 1 [12]. However, even these un-
expected g¢-values are described well by our calculations.
This makes us confident that the energy levels obtained
numerically are sufficiently accurate to perform a statis-
tical analysis on the nearest-neighbor spacings (NNS), as
discussed in the following.

The NNS distribution, P(s), measures the distribu-
tion of energy spacings between consecutive eigenstates.
In order to allow a comparison of large energy spacings
far away from threshold with small energy spacings close
to threshold, the spectra were unfolded, i.e. the energy
spacings were divided by an energy-dependent mean level
spacing [13], so that the mean unfolded spacing, s, is
unity. For a single unperturbed Rydberg series (or, more
generally, for any regularly spaced energy levels), this
would lead to a constant unfolded level spacing s = 1,
ie. to P(s) = d(s — 1), where ¢ is the delta-function.
When a good quantum number exists in a system, the
spectrum can be divided into various non interacting, but
overlapping series. The nearest neighbor of a given state
belongs then typically to another series, and the energies
of neighboring states are thus completely uncorrelated,
giving rise to a Poisson distribution, P(s) = exp(—s).
This happens e.g. in integrable multi-dimensional sys-
tems, but also if several irregular series overlap without
interaction. For a fully chaotic system, the prediction for
P(s) can be derived from random-matrix theory. Due
to time reversal symmetry of the system, a Gaussian
Orthogonal Ensemble (GOE) of random matrices [13]
is used resulting in P(s) to be very close to a Wigner
distribution, P(s) = Zsexp(—ws®/4). Since the num-
ber of energy levels for the statistical analysis is rather
limited in the present case, one obtains a rather noisy
P(s). We therefore use the cumulative NNS distribu-
tion, N(s) = [, P(z)dz, leading to N(s) = 1 — exp(—s)
and N(s) = 1 —exp(—ms?/4) for a Poisson and a Wigner
distribution, respectively.

The spectra were analyzed by two different procedures:
(i) globally by considering all resonances regardless of
the series to which they belong; (ii) individually for each
series associated with a given value of N — K.

We first analyze by the global procedure (i) the cal-
culated levels in the energy region 78.1000-78.2662 eV,
where there are 112 resonances, most of them from the
N = 9 series, with perturbers from higher series. The cu-
mulative NNS distribution is shown in Fig. 2(a) together
with a cumulative Poisson distribution. The agreement is
very good, showing that an approximately good quantum
number exists. This is not surprising, since one can iden-
tify experimentally states with different N — K (see Fig.
1(a)). Occasionally, these states are mixed with other se-
ries (in the vicinity of perturbers), but N — K is still ap-
proximately a good quantum number. This is also partly



true for other series not observed in the experiment [14]:
the series with positive K are almost independent, while
those with negative K are significantly coupled. In the
full spectrum, the various N — K series are superimposed
with rather weak mixing, resulting mainly in an uncorre-
lated ensemble of levels, which thus obeys Poisson statis-
tics. This complies with the stability of the eZe collinear
configurations with respect to off-collinear perturbations.

Hence, a relevant data analysis must be done individ-
ually for each N — K series (procedure (ii)). The cu-
mulative NNS distributions, N(s), obtained in this way,
are shown in Fig. 2(b) for resonances below I, and in
Fig. 2(c) for those below Iy. The statistical accuracies are
limited due to the relatively small number of data points
with 71 (60) spacings for Iy (Iy). Moreover, for Iy, only
series with K between 0 and 8 were unfolded because of
K-mixing for negative K values, while for I all series
are used. The I, distribution clearly reflects the quasi-
regularity in this energy region, as it is very close to a
step function, which results from integrating over a delta-
function. This is the statistical analogue to the fact that
the spectrum below I, is composed only of N = 4 states
and can be described by single-channel quantum defect
theory. Below Iy, the situation has slightly changed, al-
though the distribution still does not match a cumulative
Wigner distribution. It means that the relative density
of chaotic perturbers with NV > 9 has increased as well
as their interaction with the various Rydberg series. The
bold line in Fig. 2(c) shows N(s) using only the exper-
imentally observed series N — K = 2 and 4. Due to
the small number of 17 spacings, the statistics are rela-
tively poor, but it is striking that the bold line closely
follows the solid line. As a consequence, the spectrum
in Fig. 1(a) represents the first experimental verification
of a transition of the NNS distribution towards quantum
chaos in a three-body Coulomb system.

The complex numerical calculations for 3D helium ren-
der it difficult to obtain enough spacings for a quantita-
tive analysis in case of N>9. However, the fact that
N — K remains approximately a good quantum number
means that the bending motion can be essentially frozen
in the eZe configuration. In other words, the quantum
properties are essentially those of 1D helium, a system
that has only two degrees of freedom. This leads to much
simpler numerics allowing higher ionization thresholds to
be reached. We have therefore calculated the resonances
of 1D helium below Iy, I3, and I17 using a new approach
(banded sparse matrix representation of the Hamiltonian
in a 1D perimetric basis, in the spirit of Ref. [6]) that rep-
resents a significant improvement over previous methods
[15].

In order to improve statistics, we calculated spacings
in a given energy region for slightly different values of
the nuclear charge Z, from 1/Z = 0.45 to 1/Z = 0.55, in
steps of 0.01. These values are statistically uncorrelated
and sufficiently close to Z = 2 of helium, so that the av-

erage density of states and the classical dynamics do not
change significantly. Figs. 2(d)-(f) show the cumulative
NNS distributions for states below Iy, I13, and I;7, re-
spectively, as well as the cumulative Wigner distribution
and the 3D result for Iy. The results demonstrate that
the statistical level properties are essentially the same for
1D and 3D helium and they illustrate the transition from
an irregular regime (Iy), with a distribution intermediate
between a step function and a cumulative Wigner distri-
bution, to a chaotic regime (I17), with a distribution that
is almost Wigner-like. For I;7, the lack of large spacings
is the only remnant of regularity.
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FIG. 2. (a)-(c): Cumulative NNS distributions for the 'P°
states of helium below (b) I4 and (a,c) Io. (a): Global analysis
using all levels below Iy. The data (solid line) agree very well
with a cumulative Poisson prediction (dashed line). (b) and
(c): Distributions below I4 and Iy, respectively, obtained by
analyzing separately individual series with different K. For Iy
(c), the bold line is the distribution derived from experiment.
(d)-(f): Cumulative NNS distributions for singlet states of 1D
helium (horizontal bars) below Iy, I13, and Ii7, respectively.
The solid lines are the fit results (see text). The bold solid line
in (d) is the NNS distribution for states of 3D helium below I5.
The dashed lines in (b)-(f) represent the cumulative Wigner
distribution.

This behavior can be understood in a quantitative way
by the model of Zakrzewski et al. [10], which was devel-
oped to understand the NNS statistics of the hydrogen
atom in a magnetic field, whose spectrum is quite similar
to that of helium in the sense that ’chaotic’ perturber
states interact with a regular series. In this model, the
Hilbert space is composed of two subspaces, a ’regular’



one and a ’chaotic’ one. The model Hamiltonian is diag-
onal in the regular subspace with equally spaced eigen-
values (representing Rydberg series). In the chaotic sub-
space (representing the perturbers), the Hamiltonian is
modelled by a random matrix, with a coupling v between
regular and chaotic states (v in units of the spacing be-
tween regular states; for details see Ref. [10]). For large
matrices, this model has only two parameters: the weight
p of chaotic states (1 — p of regular states) and the cou-
pling strength v. Above the first ionization threshold, an
imaginary part is added to the GOE matrix as in [10],
with an additional parameter measuring the strength of
coupling to the continua; this coupling strength is small
playing therefore only a minor role.

The calculated NNS distributions for 1D-helium were
fitted with this model, which turned out as a good de-
scription. The fits reproduce the lack of large spacings,
and result in p = 0.29, 0.33, and 0.40 for Iy, I;3, and
I7, respectively. A second estimate for p is based on the
size of the cut-off value for the level spacings (see Fig.
2(d-f)), which can be related to p. In the perturbative
regime, when the coupling between chaotic and regular
levels is not so strong as to modify their densities, two
neighboring states cannot be further apart than two un-
perturbed regular states. The reason is that a perturber
repels neighboring levels and in this way reduces the NNS
between them. With m = p/(1 — p) being the average
number of chaotic states per regular state, the largest
possible spacing will be (m + 1) = 1/(1 — p) times the
mean level spacing. This procedure leads to p = 0.25,
0.33, and 0.41 for Iy, I3, and I;7, respectively.

A further rough estimate for p not based on the model,
but on the physics of the real system, is possible: the
local density of regular states can be estimated assuming
that a Rydberg series converging to In sees an effective
nuclear charge of Z—1 = 1. The density of chaotic states
is the sum of densities of states of all series with higher
N. As N increases, the upper thresholds lie closer and
closer leading to an increase in the fraction of chaotic
states. In this way, we obtain p = 0.23, 0.35, and 0.43,
respectively, for Ig, I3, and I17. We note that all three
approaches provide rather similar results for p.

The increase of p with N alone, however, is not suf-
ficient to explain the transition to an almost Wigner-
like distribution for Ij7: the coupling strength between
chaotic and regular states has to increase too. This is
indeed the case, with the best fits resulting in v 2 0.38,
0.73, and 1.2 for Iy, I13, and I7, respectively. It clearly
shows that the individual influence of each perturber gets
more important when one approaches higher thresholds.
This leads to a globally chaotic spectrum, where a dis-
tinction between regular levels and perturbers loses more
and more its meaning.

In conclusion, we have found — on the basis of sta-
tistical analysis — clear evidence of a transition towards
quantum chaos in the doubly excitated spectrum of he-

lium below Iy, with support from the results of our ab
initio calculations for 3D and 1D helium. The effects of
chaos correspond to a loss of the radial quantum num-
ber N, whereas N — K remains approximately a good
quantum number, and they are directly related to the
instability of the eZe orbits in radial direction (i.e pre-
serving collinearity) and their stability with respect to
bending. The statistical study of 1D helium provides an
estimate for the observation of a fully chaotic regime in
3D helium (for N > 17). It may happen that this regime
appears even at lower N values if N — K breaks down.
One can hope that future experiments as well as numeri-
cal calculations for 3D helium in the region above Iy will
provide further insight into the chaotic regime of helium.
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